- (8cos(0)2 + 3cos(2π/3))·(8cos(0)2 - 3cos(2π/3)) =
- (8cos(2π/3) - 5a)·(cos(π)-1 - 7c-2) =
- (6b3 + 5a-2)·(6b3 - 5a-2) =
- (7b3 - 7b)·(7b3 + 7b) =
- (5c-2 + 5b-2)2 =
- (7c-1 + 8a)·(a2 - 7b-1) =
- (3a-1 + 8c-1)·(3b + 5b2) =
- (3b + 7a2)·(5cos(0)2 - 5x-2) =
- (3x - 3cos(2π/3)-2)2 =
- (6cos(π)2 - 6a-1)2 =
- (a-1 + 7b-1)·(5c3 - 6x) =
- (6x-1 + c3)·(7a-1 + 6cos(π)2) =
- (3b2 - 6a2)·(3c2 - a) =
- (3b-2 + 3cos(π/2)3)2 =
- (8c3 - 3a3)·(c + 3x) =
- (3x3 + a2)·(5b2 - 8b) =
- (3a-1 - 7c-1)·(5x2 - 3c) =
- (7x-2 - x)·(7x-2 + x) =
- (7cos(2π/3)-2 + cos(π/2)-1)·(8b3 - 8b2) =
- (6b-2 - 8cos(π/2))2 =
- (3x3 - 5c-1)·(5cos(2π/3)3 + 7a) =
- (3x-2 - 7b)2 =
- (5cos(0) + 6a)·(5cos(0) - 6a) =
- (5a2 - 3cos(π/2)-1)2 =
- (8cos(π/2)2 - 5x2)2 =